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It is pointed out that the collapse of the turbulent dissipative range on Kolmogorov
scales does not require either of the two major assumptions in Kolmogorov’s [“The
local structure of turbulence in incompressible viscous fluid for very large Reynolds
numbers,” Dokl. Akad. Nauk USSR 30, 299 (1941)] similarity hypothesis, i.e., Rλ,
the Taylor microscale Reynolds number, is very large and local isotropy is satisfied.
In particular, the Kolmogorov velocity and length scales are shown to be the appro-
priate normalization scales when the large-scale terms in the transport equations for
the second-order statistics can be neglected. Evidence for this scaling is discussed
critically on the basis of the available data. It is also shown that this scaling breaks
down when Rλ becomes too small, typically below 20. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4869305]

I. INTRODUCTION

Much attention has been given to the study of the turbulent small-scale motion (or SSM), mainly
as a result of the postulates made by Kolmogorov. The first two similarity hypotheses widely known
as K41 were enunciated by Ref. 1. The present paper is concerned with K41, which essentially
postulates that the statistics of the small-scale motion are determined uniquely by two parameters:
〈ε〉, the mean energy dissipation rate and ν, the kinematic viscosity. Two assumptions underpin K41:
the Reynolds number is “very large” and the small scales are isotropic. Neither of these is likely to
hold for the overwhelming majority of flows encountered in the laboratory.

It has now been established unambiguously that the finite Reynolds number (FRN) effects
cannot be discounted, especially on inertial range (or IR) scales (e.g., Refs. 2–8). Starting with Lin’s
transport equation for the 3D energy spectrum E(k, t), viz.,

∂ E(k, t)

∂t
= T (k, t) − 2νk2 E(k, t), (1)

where T(k, t) is the nonlinear spectral transfer function, Ref. 2 concluded that the Kolmogorov
4/5 law,9 which is the only exact relation – unaffected by intermittency effects – for inertial range
statistics, is unlikely to be observed in the laboratory, when Rλ is smaller than about 103. Rλ is the
Taylor microscale Reynolds number (Rλ= 〈u2〉1/2λ/ν, λ is the Taylor microscale associated with the
longitudinal velocity fluctuation u). Qian also concluded that Rλ should be greater than 104 for the
extent of the inertial range to be about one decade and emphasized that the so-called inertial range
found in experiments and simulations is only a scaling range which, strictly, should be distinguished
from Kolmogorov’s inertial range. These conclusions have since been convincingly backed up by
results from methods in either physical space, see Eq. (3) in Sec. II, or in Fourier space, using Eq.
(1), albeit with some differences in the precise value of Rλ needed to establish a substantial inertial
subrange. Using the former approach, Ref. 7 found that the asymptotic value of 4/5 is approached
more rapidly for forced than for decaying turbulence and estimated that an inertial range will exist
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only if Rλ exceeds about 103 with forcing and about 106 in decaying turbulence. More recently, Ref. 8
who used Lin’s equation and the Eddy Damped Quasi Normal Markovianisation closure found that
Rλ should exceed about 5 × 103 for forced turbulence and 5 × 104 for freely decaying turbulence.

The SSM contains scales in both the dissipative range (DR) and the IR or, more appropriately,
scaling range (SR). As outlined above, the SR scales are affected by the FRN effect. This effect,
which becomes more pronounced as the scale increases, reflects the importance of the non-stationary
term in the Kármán Howarth10 (or KH) equation (see Sec. II) or, equivalently, Eq. (1).

The present paper focuses on the DR scales where the effect of the large scales tends to be small.
As detailed in Secs. II and III, the neglect of this effect leads to a possible similarity solution based
on Kolmogorov scales, irrespectively of whether the flow is locally isotropic (Sec. II) or locally
axisymmetric (III). This in turn suggests that the two main requirements of K41, viz., Rλ should
be very large and the small scales should be isotropic, could be relaxed, provided the large-scale
effects are negligible. Available one-dimensional spectra are discussed in some detail in Sec. IV
in the context of this relaxation. In Sec. V, we consider specific situations where the Kolmogorov
scaling in the dissipative range is no longer tenable. Section VI summarizes our conclusions.

II. SIMILARITY SOLUTION FOR ISOTROPIC SMALL SCALES

The analytical approach is developed by considering the transport equations in physical space
of the second-order statistics (structure functions). Obviously, a similar approach can be developed
in Fourier space. The crux of the analytical approach is a critical comparison between terms that
should be prevalent in the DR and terms which reflect various types of effects associated with large
scales, such as the decay of turbulent energy, e.g., decaying homogeneous isotropic turbulence for
which local isotropy is tenable even though Rλ may be small. This case, which has been widely
studied in the literature, is reanalyzed in this section.

An appropriate starting point is the transport equation for the two-point velocity correlation
function first derived by KH for homogeneous isotropic (at all scales) turbulence, i.e.,

∂

∂t
(〈u2〉h) = ∂

∂r
(〈u2〉3/2k) + 4

〈u2〉3/2k

r

+2ν

[
∂2〈u2〉h

∂r2
+ 4

r

∂〈u2〉h
∂r

]
, (2)

where h (= 〈u(x)u(x + r)〉/〈u2〉) and k (= 〈u2(x)u(x + r)〉/〈u2〉3/2) are the 2-point second- and
third-order velocity correlation functions; the notation used here differs from that in KH and
Ref. 11.

The corresponding transport equation for the second-order velocity structure function was
written first by Ref. 9 and later discussed in more detail by Ref. 11. Reproduced below is the form
of the equation considered by Batchelor, viz.,

3
∂

∂t

(
2〈u2〉 − 〈(δu)2〉) = ∂

∂r
〈(δu)3〉 + 4

〈(δu)3〉
r

−6ν

[
∂2〈(δu)2〉

∂r2
+ 4

r

∂〈(δu)2〉
∂r

]
, (3)

where 〈(δu)2〉 = 〈(u(x + r) − u(x))2〉 and 〈(δu)3〉 = 〈(u(x + r) − u(x))3〉 are the second- and third-
order structure functions, respectively. The relations between the structure functions and correlation
functions are

〈(δu)2〉 = 2〈u2〉(1 − h(r ))

and

〈(δu)3〉 = 6〈u2〉3/2k(r ).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.148.197.43 On: Wed, 20 May 2015 02:59:05



045105-3 Antonia, Djenidi, and Danaila Phys. Fluids 26, 045105 (2014)

The term on the left side of Eq. (3) reduces to −4〈ε〉 if ∂〈(δu)2〉/∂t is zero, since

〈ε〉 = −3

2

d〈u2〉
dt

. (4)

After integrating Eq. (3) with respect to r and applying the boundary conditions

〈(δu)3〉 = 0,

at r = 0, Eq. (3) becomes (Kolmogorov),9

− 4

5
〈ε〉r = 〈(δu)3〉 − 6ν

d〈(δu)2〉
dr

. (5)

Batchelor showed that a similarity solution of Eq. (5) is given by

〈(δu)2〉 = (ν〈ε〉)1/2 f

(
r

η

)
,

〈(δu)3〉 = (ν〈ε〉)3/4g

(
r

η

)
, (6)

i.e., the similarity scales are the Kolmogorov velocity uK = (ν〈ε〉)1/4 and length η = (ν3/〈ε〉)1/4

scales. Equation (5) then becomes

− 4

5

r

η
= g

(
r

η

)
− 6ν

d f

d(r/η)
, (7)

where each term is a function only of r/η. This “prompted” Batchelor to suggest that Eq. (7) may be
used to support Kolmogorov’s first similarity hypothesis.9 Kolmogorov and Batchelor neglected the
∂/∂t term by assuming stationarity, an assumption that becomes more readily justifiable as Rλ keeps
increasing. Batchelor argued that when the focus is on small eddies within a domain of spatial extent
G, it is not unreasonable to assume that the motion due to these eddies is approximately steady for
time intervals within G. Given that the characteristic period of an eddy should decrease as the size
of the eddy decreases, it should become increasingly smaller compared to the characteristic time
L/〈u2〉1/2 of the flow, where L is the integral length scale. A similar argument was proposed by Ref.
12.

Saffman13 pointed out that, for homogeneous turbulence, Rλ does not necessarily have to be
large for the inequality

∂〈(δu)2〉
∂t

� 4

3
〈ε〉 (8)

to be satisfied. If t is associated with a characteristic time scale (L/〈u2〉1/2) of the large scale motion,
then

〈(δu)2〉
u2

K

� 4

3

(
L

〈u2〉1/2

) 〈ε〉
u2

K

. (9)

Now, if L = λRλ/15, the normalized dissipation rate parameter Cε , defined as

Cε = 〈ε〉L

〈u2〉3/2
(10)

is 1, so that 〈u2〉/〈ε〉 (= L/〈u2〉1/2) can also be interpreted as a characteristic time scale of the large
scale motion. With 〈ε〉 = 15ν〈u2〉/λ2, it follows that

〈(δu)2〉
u2

K

� 4

3

Rλ

151/2
(11)

or, alternately,

〈(δu)2〉
u2

K

� 4

3

〈u2〉
u2

K

, (12)
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since 〈u2〉/u2
K = 2Rλ/151/2. Relation (8) can therefore be satisfied either when Rλ is sufficiently

large or when the scale r is sufficiently small (〈(δu)2〉/〈u2〉 � 1). In either case, the similarity solution

〈(δu)2〉 = u2
0 f

(
r

l0

)
, (13)

〈(δu)3〉 = u3
0g

(
r

l0

)
, (14)

with u0 and l0 as the relevant velocity and length scales, satisfies Eq. (5), viz.,

u3
0

〈ε〉l0
g

(
r

l0

)
= 4

5

r

l0
− 6

νu2
0

〈ε〉l2
0

f ′ (15)

(the prime signifies derivative with respect to r/l0), provided that their non-dimensional coefficients
are constant, namely,

u3
0/〈ε〉l0 = C1 (16)

and

νu2
0/

(〈ε〉l2
0

) = C2. (17)

A possible solution which satisfies (16) and (17) is u0 ∼ (ν〈ε〉)1/4 ≡ uK and l0 ∼ (ν3/〈ε〉)1/4 ≡ η,
i.e., the Kolmogorov velocity and length scales are the relevant similarity scales when inequality
(8) applies. Another possibility is to first assume that the relevant similarity velocity scale is uK, it
then follows that the similarity length scale is η. Under these conditions, C1 = 1. Note that if the
similarity velocity scale u0 is not uK, then the similarity length scale cannot be η, and under these
conditions, (16) becomes Rel0 = l0u0

ν
= const., i.e., the Reynolds number based on the similarity

scales should be constant for the similarity at scale l0 to be satisfied. Equation (15) does not require
Rλ to be large for the dissipative scales to satisfy Kolmogorov similarity.

We now examine the situation where the KH equation does not apply, since the effect of the
large scale terms, due, for example, to the presence of the mean shear or turbulent diffusion, needs
to be taken into account. As a first step, we assume that local isotropy still holds. Therefore, the
transport equation for 〈(δui)2〉 (summation applies to double Latin indices) becomes14

−4

3
〈ε〉r + 2ν

d

dr
〈(δui )

2〉 − 〈δu(δui )
2〉

− 1

r2

∫ r

0
s2

[
2
∂U

∂y
〈δuδv〉 + ∂y〈(v + v+)(δui )

2〉
]

ds = 0, (18)

where s is a dummy variable. An important remark needs to be made at this stage. Both additional
terms in Eq. (18) reflect large-scale effects in a fixed frame; the first one is due to the weak shear,
while the second one reflects the inhomogeneity along the direction y normal to the wall (when
one is present in the flow). Equation (18) is analogous to the scale-by-scale energy budget equation
for temperature fluctuations fed by a mean temperature gradient.15 Furthermore, Eq. (18) may be
written in the generic form

〈ε〉 F1(r ) + νF2(r ) + F3(r ) + L ST (r ) = 0, (19)

where Fi are functions of the modulus r of the increment vector �r and eventually involve constants
(e.g., F1(r ) = − 4

3r , so that the first term in Eq. (19) becomes − 4
3 〈ε〉 r ). Term F3 corresponds to

the third-order term. It is important to note that the prefactors of the functions F1 and F2 are the
physical parameters 〈ε〉 and ν. These are the only physical parameters which appear in the 1-point
energy budget equation, i.e., the limiting form of (19) for scales larger than the integral scale. The
term LST (or “Large-Scale Term”) depends on r and includes physical constants characteristic of
the flow, such as the mean shear ∂U/∂y and turbulent diffusion.

Finally, the only necessary condition for Kolmogorov similarity is that LST becomes negligible
at small scales with respect to the first two terms in Eq. (19) (term F3 reflects turbulent advection
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and naturally vanishes for small scales). Under these conditions, Eq. (19) reduces to

〈ε〉 F1(r ) + νF2(r ) ≈ 0, (20)

and the only similarity at these scales is based on length/velocity scales constructed from the physical
parameters 〈ε〉 and ν. Kolmogorov scaling is thus the only solution tenable over the range of scales
where large-scale effects may be neglected.

III. SIMILARITY SOLUTION FOR LOCAL AXISYMMETRY

The simplest relaxation of local isotropy is to assume local axisymmetry, or invariance of small-
scale statistics with respect to rotation about a chosen coordinate axis or axis of axisymmetry. All
statistics now depend on two variables: r (the modulus of the separation vector �r ) and μ, the cosine
of the angle between the axis of axisymmetry and �r . The transport equation for the second-order
structure function 〈(δui)2〉 is16

∂t 〈(δui )
2〉(�r ) + 2〈δ(Uα∂αui ) · δui 〉(�r ) + 2〈δ(uα∂αUi ) · δui 〉(�r )

+1

2

〈[
∂α + ∂+

α

] · [
uα + u+

α

]
(δui )

2
〉

+2/ρ(∂i + ∂+
i )〈δp · δui 〉(�r ) + ∂

∂rα

〈δuα(δui )
2〉(�r ) =

+ 2ν
∂2

∂rα
2
〈(δui )

2〉(�r ) − 2
(〈ε〉 + 〈ε〉+)

. (21)

Note that the first four terms correspond to large-scale effects. In (21), each term depends on
the spatial vector �r . The equation can be rewritten in a slightly simplified form

D(�r) + T (�r ) + P(�r ) + T D(�r) + P D(�r )

+ ∂

∂rα

〈δuα(δui )
2〉(�r ) = 2ν

∂2

∂rα
2
〈(δui )

2〉(�r ) − 2
(〈ε〉 + 〈ε〉+)

, (22)

where terms D, T, P, TD, and PD are the decay, transport, production, turbulence diffusion, and
pressure diffusion terms, respectively.

An anisotropic (axisymmetric) treatment is to be further applied to Eq. (22), in which each term
depends on the spatial vector �r . Note also that this is a scalar equation, representing the scale-by-scale
kinetic energy budget. We assume that the flow is axisymmetric with respect to a direction specified
by �n. Flow statistics are then invariant to rotations in planes normal to �n and symmetric with respect
to �n. We note

r2 = �r · �r and rμ ≡ �r · �n. (23)

In this context, each term of the equations depends on two variables, r and μ. Large-scale inhomo-
geneous variations may be present along the axisymmetry direction �n. We consider that statistics are
homogeneous in planes perpendicular to �n.

The advection term ∂
∂rα

〈δuα(δui )2〉(�r ) is written in a manner similar to Refs. 17 and 18. The
Laplacian term can be written by using its axisymmetric form (e.g., Ref. 19). After some manipula-
tions, the final axisymmetric form of the scale-by-scale energy budget equation is16

G(r, μ) = −2

3

[〈ε〉 + 〈ε〉+] +

2ν
1

r3

∫ r

0
s2
(r, μ)〈(δui )

2〉ds

− 1

r3

∫ r

0
s2 (D(r, μ) + T (r, μ) + P(r, μ) + T D(r, μ) + P D(r, μ)) ds, (24)

where 
 represents the Laplacian.19
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Note the generality of (24) vis à vis the well known, classical “4/3” equation. The main difference
is that the axisymmetric equation contains an explicit spatial variation of the mean kinetic energy
dissipation rate.

Equation (24) may be expressed in the following, simpler form

νF1(r, μ) + 2

3

(〈ε〉 + 〈ε〉+) + F4(r, μ) + L ST (r, μ) = 0, (25)

where the function F1 involves the Laplacian and 〈ε〉+ indicates the mean energy dissipation rate at
the point �x + �r . For sufficiently small scales, term F4 becomes negligible with respect to the first
two terms. If LST is negligible, then the only relevant physical parameters are once again 〈ε〉, 〈ε〉+
(the mean energy dissipation rate at the two points) and ν. Under these conditions, Eq. (25) reduces
to

2

3

[〈ε〉 + 〈ε〉+] = 2ν
1

r3

∫ r

0
s2
(r, μ)〈(δui )

2〉ds. (26)

Note again that both members depend on �r , so on r and μ. In this case, it is necessary that the
similarity scales u0 and l0 depend on the angle μ. Rendering dimensionless the two terms with
respect to these (as yet unknown) variables leads to

ν

〈ε〉 + 〈ε〉+ · u2
0

l2
0

= Const(μ). (27)

Now, there are two possibilities:
(i) Along any radial direction (i.e., for any μ), the variations of 〈ε〉 are slow over the dissipative

range scales (where the large-scale terms have already been neglected), then along that direction
an appropriate set of normalization scales is uK and η calculated using ν and 〈ε〉. Note that this
requirement, i.e., local homogeneity along any direction defined by μ = const., is less stringent than
that of local isotropy. It is important to stress here that most of the Kolmogorov similarity tests are
performed using experimental data obtained with hot/cold wires. Therefore, the spatial scales (or
wavenumbers) are almost invariably constructed by assuming the validity of Taylor’s hypothesis. The
latter, which cannot be circumvented in most cases, has however the disadvantage that homogeneity is
artificially introduced along the direction of the mean flow. Under these conditions, the Kolmogorov
similarity has the best prospect of being valid in flows where statistics are calculated with Taylor’s
hypothesis (along the direction of the mean flow), even though those flows are basically anisotropic.

(ii) Another possibility is to calculate statistics from real, spatial information (gathered through
either DNS or, e.g., PIV). In these flows, for any value of the angle μ, the variations of 〈ε〉
are to be taken into account. One solution is to consider the scale L below which terms LST
become negligible. With 〈̃ε〉 = [〈ε〉r=0 + 〈ε〉r=L] /2, the appropriate scales are η = (ν3/〈̃ε〉)1/4 and
uK = (ν 〈̃ε〉)1/4. Again, Kolmogorov scaling is appropriate for any value of the angle μ, and for
scales below which the local homogeneity holds.

To conclude this section, we recall that the Kolmogorov similarity does not necessarily require
the Reynolds number to be large or local isotropy to be strictly satisfied. A much less restrictive
requirement is that the large-scale terms are small compared to the two terms containing 〈ε〉 and ν

and that local homogeneity along any given �r direction holds, at least approximately.

IV. RESULTS PERTAINING TO THE COLLAPSE OF KOLMOGOROV-NORMALIZED
SPECTRA

Although the discussion in Secs. II and III has focused on structure functions, we switch our
attention here to the spectrum, mainly because of the prevalence of Fig. 1 in the literature; we note
however that the collapse of 〈(δu*)2〉 in the dissipative range has also been documented, e.g., Fig.
2 of Ref. 20. Figure 1, reproduced from Ref. 21 and based largely on Ref. 22, displays spectra of
u (note that

∫ ∞
0 E11(k1)dk1 = 〈u2〉, where E11(k1) represents the spectral density of u and k1 is the

one-dimensional wavenumber along the flow direction) normalized by the Kolmogorov scales uK

and η. An asterisk denotes normalization by η and uK. The spectra were obtained from a wide variety
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FIG. 1. One-dimensional longitudinal velocity spectra measured in various turbulent flows where Rλ varies from 23 to 3180.
Adapted and used with the permission of P. Chassaing (Ref. 21, p. 295).

of flows and a wide range of Rλ. The original version of this figure was compiled by Ref. 23 who
noted that at small k∗

1 , the energy spectrum varies both with Rλ and type of flow, whereas the small
energy dissipating eddies (large k∗

1 ) seem to be universal, i.e., independent of both Rλ and type of
flow. Saddoughi and Veeravalli22 remarked that the extent of the IR increases with Reynolds number.
While the establishment of a SR with a power-law exponent which tends to −5/3 as Rλ increases is
unmistakable, the evidence for a −5/3 range, even for the relatively large value (≈1450) of Rλ in
Saddoughi and Veeravalli’s boundary layer data, is not entirely convincing. This is reflected in the
behaviour of their data for 〈(δu)3〉 which do not conform rigorously with the “4/5” law. Figure 1 has
been used inter-alia in the texts by Refs. 21, 24, and 25 mainly in the context of providing support
for K41.

It should be noted that Ref. 26 (hereafter GS) also collected measured spectra of u (Fig. 3 of
their paper) using the same coordinates as in Fig. 1. Except for the high Rλ tidal channel data of
Ref. 27, all the measurements obtained in grid turbulence with air or water as the fluid were for
relatively small values of Rλ. Ref. 26 concluded that the collapse in the DR of all the spectra was
quite good, thus providing validation for Kolmogorov’s first similarity hypothesis. Figure 3 of Ref.
26 has appeared in the texts of Refs. 28 and 29. Reference 28 noted that it was interesting that
the collapse in the DR applied even at values of Rλ for which there ought to be significant overlap
between the energy containing range and the dissipative range. Ref. 26 had previously argued that
provided the wavenumber of energy-containing eddies is smaller than 0.2ks (ks ≡ η−1 = (〈ε〉/ν3)1/4,
in the DR, k1 is typically greater than 0.1ks), the DR should in essence be immune from the FRN
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FIG. 2. One-dimensional longitudinal spectra, normalized by Kolmogorov scales, for several turbulent flows and values
of Rλ extending up to about 140. x: Grid turbulence, Ref. 40 (hereafter denoted CBC): Rλ = 41; solid line: Grid turbu-
lence, CBC Rλ = 65. Dashed-dotted line: Homogeneous shear flow (Rλ = 130). Triangles: axis of circular cylinder wake
(Rλ = 138). Both sets of data are adapted from Ref. 41. Channel flow centreline42; open circles: Rλ ≈ 89; filled in circles:
Rλ ≈ 67.

effects. Ref. 29 noted that the collapse of the spectra in the DR, as exhibited, for example, in Fig. 3
of Ref. 26, is not unique as other possibilities, such as the multifractal model and the variational
approach of the small scale intermittency (e.g., Refs. 30–32), can result in a collapse of the spectra
that is equally as good, if not better than that in Fig. 3 of Ref. 26, or Fig. 1. Ref. 33 also acknowledged
that the measured spectra can satisfy other scalings, not consistent with K41, but emphasized the
Kolmogorov scaling is the simplest of all available proposals and there are no data which definitely
contradict it. We recall here that the analytical considerations of Secs. II and III provide theoretical
justification for normalizing the high wavenumber spectrum by Kolmogorov scales. In contrast to
K41, these considerations do not require Rλ to be large or local isotropy to be satisfied closely.

Leaving aside the important issue of the FRN effect on the SR, the reasonable collapse of the
spectra at sufficiently large values of k∗

1 , say k∗
1 ∼ 0.1, strongly implies that K41 should be verified

more convincingly by the dissipative scales as Rλ continues to increase.
It is important to recognise that, as for Fig. 3 of Ref. 26, Fig. 1 contains several spectra for

which Rλ is small; specifically, in seven cases, Rλ is smaller than 200. One is therefore led to the
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conclusion that the large Rλ requirement of K41 is not necessary for the DR to scale in conformity
with K41. Two main comments can be made with respect to the collapse in the DR of Fig. 1.

It could be argued that as k1η approaches 1, the collapse is imperfect. The scatter in this range,
which is reduced by the use of the logarithmic scales, most likely reflects various measurement
difficulties, the most important of these being the onset of electronic noise and the imperfect
temporal and spatial resolutions of the probes.

Inevitably, errors have been committed due in part to the difficulties raised under the previous
item, but also because of the uncertainty about the actual value of 〈ε〉 which should be used. For the
grid turbulence data examined by Ref. 26, the “true” value of 〈ε〉 was used for all the spectra obtained
in grid turbulence. For this flow, the one-point energy budget is given, to a close approximation, by

〈ε〉 = −U

2

d〈q2〉
dx

, (28)

where U is the mean velocity and 〈q2〉 is the mean turbulent energy, equal to 3〈u2〉 if isotropy is
satisfied by all scales. For grid turbulence, 〈ε〉 is essentially equal to 〈ε〉iso, the isotropic value of 〈ε〉,
viz.,

〈ε〉 = 〈ε〉iso = 15ν

〈(
∂u

∂x

)2
〉

. (29)

Antonia et al.34 found that, although the components of the tensor 〈εij〉 exhibit departures from
isotropy, these are generally small, and are of either sign so that Eq. (29) is not invalidated.

Gibson and Schwartz26 (also Ref. 28) argued that in fact the true 〈ε〉 for the grid turbulence data
should be replaced by a corrected value, 〈ε1〉 say. The latter should correspond to the dissipation
rate in flows with very large Rλ for which the high wavenumber part of the spectrum coincides with
that measured in the various grid turbulence flows. Both26, 28 concluded that the difference between
〈ε〉 and 〈ε1〉 is likely to be small (typically no bigger than 10%) and hence indiscernible on a log-log
representation, such as that of Fig. 1, since the normalizations of E11(k1) and k1 involve 〈ε〉 raised
to the power of 1/4. In the analysis in Sec. II, which pertains to homogeneous isotropic turbulence,
the relevant 〈ε〉 can only be 〈ε〉iso, as given by Eq. (29). In this context, the value of 〈ε〉iso which was
used for all the grid turbulence data in Fig. 3 of GS and Fig. 1 seems justifiable.

This raises however the interesting issue of the role the energy cascade, as predicated by K41,
plays in grid turbulence for relatively small Rλ given that the small scales are approximately isotropic
irrespectively of whether a secondary contraction is used downstream of the grid. Antonia et al.35

found that isotropy is most closely approximated at all scales when the contraction is used in
combination with a grid designed to attenuate vortex shedding from the grid cylinders. For this latter
case, the representation illustrated in Fig. 2 is entirely pertinent and 〈ε〉iso is the relevant quantity to
be used for normalizing the spectra. Equation (29) can be also written as

〈ε〉 = 〈ε〉iso = 15ν

∫ ∞

0
k2

1 E11(k1)dk1 (30)

or alternatively ∫ ∞

0
k∗2

1 E∗
11(k∗

1 )dk∗
1 = 1

15
. (31)

Arguably, this latter relation may be thought of as a constraint which partly contributes to the collapse
of the spectra in the DR (e.g., Refs. 20 and 36).

To circumvent the criticism raised in the previous paragraph related to the shortcomings of the
data as k1η approaches 1, we focus here only on data which are free from the limitations due to the
noise and spatial resolution of the measuring sensors. Although corrections for spatial resolution
based on Wyngaard’s37 method can be made, it is difficult to avoid the bias that the key assumptions
of this procedure, i.e., the choice of the 3D energy spectrum and the assumption of local isotropy, can
introduce in the context of assessing the scaling in the DR. An obvious choice is to use well-resolved
DNS data. For suitably chosen values of the grid Reynolds number UM/ν (M is the mesh size of
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the grid) and the distance downstream of the grid, η can be close to 1 mm and hence the length lw
of a hot wire, when the latter is used, can be comfortably smaller than η. For nanoscale thermal
anemometry probes or NSTAP (see Ref. 38), lw is currently about 60 μm and hence the issue of
spatial resolution becomes redundant.

Since two of the data sets in Fig. 1, the DNS data39 at the centreline of a channel flow and the
grid flow data of Ref. 40 meet the previous requirements, this mitigates to some extent the criticism
that the collapse in the DR is contrived.

In his study of small-scale turbulence, Ref. 41 ruled out the use of data obtained with probes of
spatial resolution much greater than η and for which the low-pass filter cut-off frequency was equal
to or smaller than the Kolmogorov frequency. In Fig. 1 of his paper, he plotted spectra of u for 3
different flows, at relatively small values of Rλ which satisfied these criteria. These corresponding
distributions, reproduced in Fig. 2, comply with Kolmogorov scaling for k∗

1 ≥ 0.1. It is important to
underline that no corrections at large k∗

1 were applied to any of the spectra in Fig. 2. It should also be
noted that isotropy was used, via Eq. (30), to estimate 〈ε〉 in all cases. While this assumption is not
in doubt for grid turbulence (e.g., CBC), notwithstanding departures from individual components of
〈ε〉 from isotropy,34 it may not be quite as accurate for the quasi-homogeneous shear flow.

We recall that Figs. 1 and 2 may not be sensitive to how accurately 〈ε〉 is determined since the
normalization of k1 and E11(k1) involves 〈ε〉1/4.

Leaving aside the uncertainty surrounding the use of 〈ε〉iso in the wake, Fig. 2 provides con-
vincing support for the Kolmogorov scaling of the DR when Rλ is small. The DNS spectra included
in Fig. 2 were obtained at the centreline of a channel flow at Rλ = 66 and 9043 with resolutions in
the x direction of about 0.82η (Rλ = 66) and 1.12η (Rλ = 90) and are in close agreement with the
measured spectra from k∗

1 ≈ 0.1 to slightly beyond k∗
1 ≈ 1.

However, the DNS spectra of Ref. 44 for decaying isotropic turbulence in a 3D periodic box
indicate that the Kolmogorov scaling breaks down when Rλ is smaller than about 20, suggesting a
possible minimum value of Rλ, below which the Kolmogorov normalization ceases to hold.

V. BREAKDOWN IN THE COLLAPSE OF THE SPECTRA AT SMALL Rλ

The aim of this section is to indicate the minimum Reynolds number below which Kolmogorov
scaling is no longer valid. Because we first ought to provide a quantitative criterion of the statement
“the Kolmogorov scaling is no longer valid,” it is reasonable to consider that the Kolmogorov scaling
holds if it applies over a range of scales wider than a few η. Therefore, the focus in this section will
be on the dissipative range. The starting point is Eq. (11), along with the following considerations.
In the dissipative range for r → 0,

〈(δu)2〉 ≈
〈(

∂u

∂x

)2
〉

r2. (32)

We denote by rt = Nη the maximum separation in the dissipation range for which the Kolmogorov
similarity holds (the subscript “t” stands for “threshold”). Once again, we focus here on the dissipative
range in order to capture the minimum Reynolds number for which the Kolmogorov scaling is no
longer tenable. This is not at variance with the well-known fact that, for larger and larger Reynolds
numbers, the Kolmogorov scaling may be valid over a range of scales wider than the dissipative
range.

Therefore, the magnitude of 〈(δu)2〉 at r = rt is

〈(δu)2〉t ≈
〈(

∂u

∂x

)2
〉

(Nη)2. (33)

Inserting Eq. (33) into (11) leads to the threshold value (Rλ)t for Rλ, viz.,〈(
∂u
∂x

)2
〉

(Nη)2

u2
K

≤ 4

3

(Rλ)t√
15

, (34)
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so that

(Rλ)t ≥ 3N 2

4
√

15
. (35)

The requirement that Kolmogorov similarity holds for scales smaller than Nη imposes a minimum
Reynolds number provided by Eq. (35). For N = 10 (i.e., Kolmogorov scaling applies at least for
the range of scales r ≤ 10η), (Rλ)t ≥ 20, in agreement with Ref. 44.

(Rλ)t can also be estimated using a phenomenological argument, albeit with a slightly different
result. As noted in Sec. II, 〈u2〉/〈ε〉 may be interpreted as a characteristic time of the large scale
motion, viz.,

τL S � 〈u2〉
〈ε〉 , (36)

whereas the dissipative range time scale is given by the Kolmogorov time

τD �
(

ν

〈ε〉
)1/2

. (37)

For Kolmogorov scaling to apply, one expects that

τD � τL S. (38)

If we relax this to simply a factor of 10 inequality, viz.,

τD � τL S

10
, (39)

then (
ν

〈ε〉
)1/2

� 1

10

〈u2〉
〈ε〉 , (40)

which finally leads to

(Rλ)t � 10
√

15 � 39, (41)

i.e., almost twice as large as that given by Eq. (35) with N = 10.
All the spectra in Fig. 3 correspond to relatively small values of Rλ. The largest Rλ is 41,

which is for the CBC spectrum; this spectrum can serve as yardstick since it also appears in
Fig. 2 and is representative of distributions at higher Rλ. Included in Fig. 3 are the spectra downstream
(x/M = 31) of a grid consisting of floating flat square elements obtained with a lattice Boltzmann
simulation45 and spectra measured with a single hot wire downstream of two grids, one consisting
of a perforated plate (square holes of size 11 mm, M = 14 mm) and the other a mesh of interwoven
wires (d = 1 mm, M = 5 mm).

Since U is small (≤5 m/s), the temporal and spatial resolutions of the hot wire are adequate.
Indeed, the length of the wire is 1.27η (x/M = 35, ReM = UM/ν = 5140 ) for the plate and 0.7 η (x/M
= 470, ReM = 4080) and 0.26η (x/M = 470, ReM = 1470) for the mesh. The spatial resolution for the
lattice Boltzmann is about 0.78η at x/M = 35 and ReM = 3200. The inset in Fig. 3 shows that, relative
to the CBC distribution, there is a systematic increase in the magnitude of E∗

11(k∗
1 ) for k∗

1 ≥ 0.3 as
Rλ decreases. This behaviour is consistent with the DNS 3D spectra in decaying isotropic turbulence
shown in Ref. 44 (their Fig. 2) for Rλ � 20 and 16. These Kolmogorov-normalized spectra were
above the distribution of CBC (Rλ = 60.7). Together with Fig. 2 of Ref. 44, the present Fig. 3
suggests that the breakdown in Kolmogorov scaling is likely to occur when (Rλ)t is smaller than 30,
since for Rλ = 30 the collapse with CBC is reasonable, whereas at Rλ = 20, a clear departure from
the universal shape of the spectrum is obvious. The threshold is most likely between 20 and 30 and is
reasonably predicted by (35) and (41). This is not an unreasonable outcome, given the approximate
natures of (32) and (38), together with using a value of 10 for N and in (39). To detect the exact
value of Rλ at which the Kolmogorov similarity breaks down, further numerical simulations are to
be performed.
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For decaying isotropic turbulence, it is unlikely that this breakdown is due to a breakdown in
local isotropy. Indeed, this is confirmed by Fig. 4 which shows that at Rλ = 19, the simulated spectra
of E∗

11(k∗
1 ) and E∗

22(k∗
2 ) are equal at sufficiently large k∗

1 or k∗
2 . This equality is expected if local

isotropy applies since E22(k2) is, like E11(k1), a “longitudinal” spectra.

VI. CONCLUSIONS

While Fig. 1 has been used extensively in the literature in support of K41, it more correctly
underlines the importance of the FRN effect over the scaling range and a slow approach to an
asymptotic state at large values of Rλ. The collapse of the spectra over the dissipative range is in
reality convincing only at relatively small values of Rλ, as illustrated in Fig. 2. This collapse supports
the premise of Sec. II that a similarity solution for the small scales of motion based on uK and η

is plausible for decaying-type flows when the effect of the non-stationarity, represented by the ∂/∂t
term in the KH equation, is negligible. For more complicated flows, such as a quasi-homogeneous
shear flow, the Kolmogorov similarity remains plausible provided the inhomogeneity due to the
mean shear or mean strain rate does not affect the dissipative scales of motion. In either case, the
similarity does not require the restrictions imposed by K41, in particular, the existence of a large
separation between the largest scales of the flow and the dissipative scales. Consequently, local
isotropy is unlikely to be a stringent requirement, as highlighted in Sec. III.

Kolmogorov similarity does not necessarily require the Reynolds number to be large, or local
isotropy to be strictly satisfied. A much less restrictive requirement is that the large-scale terms are
small with respect to the two terms containing 〈ε〉 and ν, and that local homogeneity along any given
direction holds, at least approximately. Kolmogorov similarity has the best prospect of being valid
in flows where statistics are calculated with Taylor’s hypothesis (along the direction of the mean
flow), although these flows are basically anisotropic.

Another conclusion of this paper is that Kolmogorov normalization does break down, even
in a shearless flow such as grid turbulence, when Rλ falls below a certain threshold. Dimensional
arguments, supported by numerical and experimental grid turbulence data, suggest that this threshold
is between 20 and 30.

Although the conclusions of the paper may not, at first sight, appear surprising, they do not
appear to have yet been enunciated clearly in the literature. It is important that turbulence practitioners
are aware of the conditions that lead to a collapse of spectra in the dissipative range, or of those that
result in a breakdown of this collapse.

Nonetheless, the robustness of the Kolmogorov normalization at the second-order level is of
practical interest. For example, Ref. 46 has put forward the use of a spectral-chart method based on
the collapse of the Kolmogorov-normalized spectrum of u in the dissipative range, for estimating
〈ε〉.
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